Global Unique Solvability of Inhomogeneous Navier-stokes Equations with Bounded Density
نویسندگان
چکیده
In this paper, we prove the global existence and uniqueness of solution to d-dimensional (for d = 2, 3) incompressible inhomogeneous Navier-Stokes equations with initial density being bounded from above and below by some positive constants, and with initial velocity u0 ∈ H (R) for s > 0 in 2-D, or u0 ∈ H (R) satisfying ‖u0‖L2‖∇u0‖L2 being sufficiently small in 3-D. This in particular improves the most recent well-posedness result in [10], which requires the initial velocity u0 ∈ H (R) for the local well-posedness result, and a smallness condition on the fluctuation of the initial density for the global well-posedness result.
منابع مشابه
Inhomogeneous Navier-stokes Equations in the Half-space, with Only Bounded Density
In this paper, we establish the global existence of small solutions to the inhomogeneous Navier-Stokes system in the half-space. The initial density only has to be bounded and close enough to a positive constant, and the initial velocity belongs to some critical Besov space. With a little bit more regularity for the initial velocity, those solutions are proved to be unique. In the last section ...
متن کامل1 1 A pr 2 01 3 INHOMOGENEOUS NAVIER - STOKES EQUATIONS IN THE HALF - SPACE , WITH ONLY BOUNDED DENSITY
In this paper, we establish the global existence of small solutions to the inhomogeneous Navier-Stokes system in the half-space. The initial density only has to be bounded and close enough to a positive constant, and the initial velocity belongs to some critical Besov space. With a little bit more regularity for the initial velocity, those solutions are proved to be unique. In the last section ...
متن کاملOn the Global Unique Solvability of Initial-Boundary Value Problems for the Coupled Modified Navier–Stokes and Maxwell Equations
The global unique solvability of the first initial-boundary value problem in a bounded, two or three-dimensional domain with fixed perfectly conducting boundaries is proved for the modified Navier–Stokes equations coupled with the Maxwell equations. The system gives a deterministic description of the dynamics for conducting, incompressible, homogeneous fluids. Improved results are proved for th...
متن کاملThe Energy Balance Relation for Weak Solutions of the Density-dependent Navier-stokes Equations
We consider the incompressible inhomogeneous Navier-Stokes equations with constant viscosity coefficient and density which is bounded and bounded away from zero. We show that the energy balance relation for this system holds for weak solutions if the velocity, density, and pressure belong to a range Besov spaces of smoothness 1/3. A density-dependent version of the classical Kármán-Howarth-Moni...
متن کاملOptimization with the time-dependent Navier-Stokes equations as constraints
In this paper, optimal distributed control of the time-dependent Navier-Stokes equations is considered. The control problem involves the minimization of a measure of the distance between the velocity field and a given target velocity field. A mixed numerical method involving a quasi-Newton algorithm, a novel calculation of the gradients and an inhomogeneous Navier-Stokes solver, to find the opt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013